Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.270
Filtrar
1.
Nature ; 627(8005): 880-889, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480884

RESUMO

The evolutionary processes that underlie the marked sensitivity of small cell lung cancer (SCLC) to chemotherapy and rapid relapse are unknown1-3. Here we determined tumour phylogenies at diagnosis and throughout chemotherapy and immunotherapy by multiregion sequencing of 160 tumours from 65 patients. Treatment-naive SCLC exhibited clonal homogeneity at distinct tumour sites, whereas first-line platinum-based chemotherapy led to a burst in genomic intratumour heterogeneity and spatial clonal diversity. We observed branched evolution and a shift to ancestral clones underlying tumour relapse. Effective radio- or immunotherapy induced a re-expansion of founder clones with acquired genomic damage from first-line chemotherapy. Whereas TP53 and RB1 alterations were exclusively part of the common ancestor, MYC family amplifications were frequently not constituents of the founder clone. At relapse, emerging subclonal mutations affected key genes associated with SCLC biology, and tumours harbouring clonal CREBBP/EP300 alterations underwent genome duplications. Gene-damaging TP53 alterations and co-alterations of TP53 missense mutations with TP73, CREBBP/EP300 or FMN2 were significantly associated with shorter disease relapse following chemotherapy. In summary, we uncover key processes of the genomic evolution of SCLC under therapy, identify the common ancestor as the source of clonal diversity at relapse and show central genomic patterns associated with sensitivity and resistance to chemotherapy.


Assuntos
Evolução Molecular , Imunoterapia , Neoplasias Pulmonares , Platina , Carcinoma de Pequenas Células do Pulmão , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Células Clonais/efeitos dos fármacos , Células Clonais/metabolismo , Células Clonais/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Genes myc/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Mutação , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Platina/farmacologia , Platina/uso terapêutico , Recidiva , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/imunologia , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/terapia
2.
Plant Physiol Biochem ; 208: 108450, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38402800

RESUMO

Plants possess different degrees of tolerance to abiotic stress, which can mitigate the detrimental effect of environmental inputs affecting carbon balance. Less is known about the functions of osmoprotectants in scavenging of reactive oxygen species (ROS), generated at different sites depending on leaf age. This study aimed to clarify the osmotic adjustments adopted by old and young leaves of Oxford and I-214 poplar clones [differing in ozone (O3) sensitivity] to cope with three levels of O3 [ambient (AA), and two elevated O3 levels]. In both clones, the impact of intermediate O3 concentrations (1.5 × AA) on ROS production appeared to be leaf age-specific, given the accumulation of hydrogen peroxide (H2O2) observed only in old leaves of the Oxford plants and in young leaves of the I-214 ones (2- fold higher than AA and +79%, respectively). The induction of an oxidative burst was associated with membrane injury, indicating an inadequate response of the antioxidative systems [decrease of lutein and ß-carotene (-37 and -85% in the old leaves of the Oxford plants), accumulation of proline and tocopherols (+60 and +12% in the young leaves of the I-214 ones)]. Intermediate O3 concentrations reacted with unsaturated lipids of the plasma membrane in old and young leaves of the Oxford plants, leading to an increase of malondialdehyde by-products (more than 2- fold higher than AA), while no effect was recorded for I-214. The impact of the highest O3 concentrations (2.0 × AA) on ROS production did not appear clone-specific, which may react with cell wall components by leading to oxidative pressure. Outcomes demonstrated the ability of young leaves of I-214 plants in contain O3 phytotoxic effects.


Assuntos
Ozônio , Populus , Antioxidantes/metabolismo , Ozônio/toxicidade , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Folhas de Planta/metabolismo , Populus/metabolismo , Células Clonais/metabolismo , Fotossíntese
3.
Biotechnol J ; 19(2): e2300410, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38375559

RESUMO

Site-specific integration (SSI) via recombinase mediated cassette exchange (RMCE) has shown advantages over random integration methods for expression of biotherapeutics. As an extension of our previous work developing SSI host cells, we developed a dual-site SSI system having two independent integration sites at different genomic loci, each containing a unique landing pad (LP). This system was leveraged to generate and compare two RMCE hosts, one (dFRT) compatible with the Flp recombinase, the other (dBxb1) compatible with the Bxb1 recombinase. Our comparison demonstrated that the dBxb1 host was able to generate stable transfectant pools in a shorter time frame, and cells within the dBxb1 transfectant pools were more phenotypically and genotypically stable. We further improved process performance of the dBxb1 host, resulting in desired fed batch performance attributes. Clones derived from this improved host (referred as 41L-11) maintained stable expression profiles over extended generations. While the data represents a significant improvement in the efficiency of our cell line development process, the dual LP architecture also affords a high degree of flexibility for development of complex protein modalities.


Assuntos
Genômica , Recombinases , Cricetinae , Animais , Células CHO , Cricetulus , Recombinases/genética , Células Clonais/metabolismo , Genômica/métodos , Transgenes
4.
Nature ; 627(8003): 389-398, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253266

RESUMO

The human blood system is maintained through the differentiation and massive amplification of a limited number of long-lived haematopoietic stem cells (HSCs)1. Perturbations to this process underlie diverse diseases, but the clonal contributions to human haematopoiesis and how this changes with age remain incompletely understood. Although recent insights have emerged from barcoding studies in model systems2-5, simultaneous detection of cell states and phylogenies from natural barcodes in humans remains challenging. Here we introduce an improved, single-cell lineage-tracing system based on deep detection of naturally occurring mitochondrial DNA mutations with simultaneous readout of transcriptional states and chromatin accessibility. We use this system to define the clonal architecture of HSCs and map the physiological state and output of clones. We uncover functional heterogeneity in HSC clones, which is stable over months and manifests as both differences in total HSC output and biases towards the production of different mature cell types. We also find that the diversity of HSC clones decreases markedly with age, leading to an oligoclonal structure with multiple distinct clonal expansions. Our study thus provides a clonally resolved and cell-state-aware atlas of human haematopoiesis at single-cell resolution, showing an unappreciated functional diversity of human HSC clones and, more broadly, paving the way for refined studies of clonal dynamics across a range of tissues in human health and disease.


Assuntos
Linhagem da Célula , Hematopoese , Células-Tronco Hematopoéticas , Humanos , Cromatina/genética , Cromatina/metabolismo , Células Clonais/classificação , Células Clonais/citologia , Células Clonais/metabolismo , DNA Mitocondrial/genética , Células-Tronco Hematopoéticas/classificação , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Mutação , Análise de Célula Única , Transcrição Gênica , Envelhecimento
6.
Eur J Immunol ; 54(2): e2350700, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38039407

RESUMO

How individual T cells compete for and respond to IL-2 at the molecular level, and, as a consequence, how this shapes population dynamics and the selection of high-affinity clones is still poorly understood. Here we describe how the RNA binding protein ZFP36L1, acts as a sensor of TCR affinity to promote clonal expansion of high-affinity CD8 T cells. As part of an incoherent feed-forward loop, ZFP36L1 has a nonredundant role in suppressing multiple negative regulators of cytokine signaling and mediating a selection mechanism based on competition for IL-2. We suggest that ZFP36L1 acts as a sensor of antigen affinity and establishes the dominance of high-affinity T cells by installing a hierarchical response to IL-2.


Assuntos
Citocinas , Receptores de Antígenos de Linfócitos T , Interleucina-2 , Linfócitos T CD8-Positivos , Células Clonais/metabolismo
7.
Biotechnol J ; 19(1): e2300289, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38015079

RESUMO

Raman spectroscopy is widely used in monitoring and controlling cell cultivations for biopharmaceutical drug manufacturing. However, its implementation for culture monitoring in the cell line development stage has received little attention. Therefore, the impact of clonal differences, such as productivity and growth, on the prediction accuracy and transferability of Raman calibration models is not yet well described. Raman OPLS models were developed for predicting titer, glucose and lactate using eleven CHO clones from a single cell line. These clones exhibited diverse productivity and growth rates. The calibration models were evaluated for clone-related biases using clone-wise linear regression analysis on cross validated predictions. The results revealed that clonal differences did not affect the prediction of glucose and lactate, but titer models showed a significant clone-related bias, which remained even after applying variable selection methods. The bias was associated with clonal productivity and lead to increased prediction errors when titer models were transferred to cultivations with productivity levels outside the range of their training data. The findings demonstrate the feasibility of Raman-based monitoring of glucose and lactate in cell line development with high accuracy. However, accurate titer prediction requires careful consideration of clonal characteristics during model development.


Assuntos
Ácido Láctico , Análise Espectral Raman , Cricetinae , Animais , Células CHO , Cricetulus , Calibragem , Estudos de Viabilidade , Ácido Láctico/metabolismo , Análise Espectral Raman/métodos , Glucose/metabolismo , Células Clonais/metabolismo
8.
Neurosci Res ; 199: 36-47, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37741572

RESUMO

Bone mesenchymal stem cell (BMSC)-derived exosome (BMSC-Exo) could be a treatment method for ischemic injury. In ischemic cerebrovascular disease (IC), microglia is pivotal in neuronal damage and remodeling. This study explores the mechanisms of BMSC-Exo miR-148b-3p in regulating oxygen-glucose deprivation/reoxygenation (OGD/R)-induced human microglial clone 3 (HMC3) cell activation. Transmission electron microscopy (TEM) and qNano were used to assess BMSC-Exo features. The functions of BMSC-Exo miR-148 b-3p in OGD/R-induced HMC3 cell activation were explored via MTT assay, flow cytometry, scratch, transwell, and enzyme-linked immunosorbent assay (ELISA) assays. A dual-luciferase reporter assay was performed to determine the relationship between miR-148b-3p and Delta-like ligand 4(DDL4) or neurogenic locus notch homolog protein 1 (Notch1). OGD/R decreased miR-148b-3p expression in HMC3 cells. After BMSC-Exo treatment, miR-148b-3p expression was upregulated, cell viability and migration were inhibited, cell cycles remained in the G0/G1 phase, and proinflammatory cytokines were decreased in OGD/R-induced HMC3 cells. More importantly, BMSC-Exo miR-148b-3p could further strengthen BMSC-Exo effects. DDL4 and Notch1 are direct targets of miR-148b-3p, respectively. Moreover, the knockdown of DLL4 or Notch1 could inhibit OGD/R-induced HMC3 cell activation. BMSC-Exo miR-148b-3p inhibited OGD/R-induced HMC3 cell activation via inhibiting DLL4 and Notch1 expression, which provided a new strategy for treating cerebral ischemia.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Humanos , MicroRNAs/metabolismo , Oxigênio/farmacologia , Glucose/farmacologia , Células-Tronco Mesenquimais/metabolismo , Células Clonais/metabolismo , Apoptose , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
9.
Immunology ; 171(3): 428-439, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38097893

RESUMO

The type and strength of effector functions mediated by immunoglobulin G (IgG) antibodies rely on the subclass and the composition of the N297 glycan. Glycosylation analysis of both bulk and antigen-specific human IgG has revealed a marked diversity of the glycosylation signatures, including highly dynamic patterns as well as long-term stability of profiles, yet information on how individual B cell clones would contribute to this diversity has hitherto been lacking. Here, we assessed whether clonally related B cells share N297 glycosylation patterns of their secreted IgG. We differentiated single antigen-specific peripheral IgG+ memory B cells into antibody-secreting cells and analysed Fc glycosylation of secreted IgG. Furthermore, we sequenced the variable region of their heavy chain, which allowed the grouping of the clones into clonotypes. We found highly diverse glycosylation patterns of culture-derived IgG, which, to some degree, mimicked the glycosylation of plasma IgG. Each B cell clone secreted IgG with a mixture of different Fc glycosylation patterns. The majority of clones produced fully fucosylated IgG. B cells producing afucosylated IgG were scattered across different clonotypes. In contrast, the remaining glycosylation traits were, in general, more uniform. These results indicate IgG-Fc fucosylation to be regulated at the single-clone level, whereas the regulation of other glycosylation traits most likely occurs at a clonotypic or systemic level. The discrepancies between plasma IgG and culture-derived IgG, could be caused by the origin of the B cells analysed, clonal dominance or factors from the culture system, which need to be addressed in future studies.


Assuntos
Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , Humanos , Glicosilação , Fragmentos Fc das Imunoglobulinas/genética , Linfócitos B/metabolismo , Células Clonais/metabolismo
10.
Stem Cell Res ; 74: 103296, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38154385

RESUMO

Parkinson's disease is the second most common neurodegenerative disorder and is pathologically characterized by synuclein-rich aggregations (Lewy bodies) in neurons. Multiplication of the synuclein gene (SNCA) increases the mRNA and protein levels of synuclein, resulting in autosomal dominant hereditary Parkinson's disease. In the present study, we established three isogenic induced pluripotent stem cells (iPSCs) from a patient harboring SNCA duplication, which showed pluripotency, three-germ layer differentiation capacity, and normal karyotypes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Clonais/metabolismo , Diferenciação Celular
11.
Science ; 382(6675): eadf8486, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38060664

RESUMO

The spatial distribution of lymphocyte clones within tissues is critical to their development, selection, and expansion. We have developed spatial transcriptomics of variable, diversity, and joining (VDJ) sequences (Spatial VDJ), a method that maps B cell and T cell receptor sequences in human tissue sections. Spatial VDJ captures lymphocyte clones that match canonical B and T cell distributions and amplifies clonal sequences confirmed by orthogonal methods. We found spatial congruency between paired receptor chains, developed a computational framework to predict receptor pairs, and linked the expansion of distinct B cell clones to different tumor-associated gene expression programs. Spatial VDJ delineates B cell clonal diversity and lineage trajectories within their anatomical niche. Thus, Spatial VDJ captures lymphocyte spatial clonal architecture across tissues, providing a platform to harness clonal sequences for therapy.


Assuntos
Linfócitos B , Receptores de Células Precursoras de Linfócitos B , Receptores de Antígenos de Linfócitos T , Linfócitos T , Humanos , Linfócitos B/metabolismo , Células Clonais/metabolismo , Perfilação da Expressão Gênica/métodos , Receptores de Células Precursoras de Linfócitos B/genética , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/metabolismo
12.
Atherosclerosis ; 387: 117341, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37940399

RESUMO

BACKGROUND AND AIMS: Smooth muscle cell (SMC) lineage cells in atherosclerosis and flow cessation-induced neointima are oligoclonal, being recruited from a tiny fraction of medial SMCs that modulate and proliferate. The present study aimed to investigate the clonal structure of SMC lineage cells healing more severe arterial injury. METHODS: Arterial injury (wire, stretch, and partial ligation) was inflicted on the right carotid artery in mice with homozygous, SMC-restricted, stochastically recombining reporter transgenes that produced mosaic expression of 10 distinguishable fluorescent phenotypes for clonal tracking. Healed arteries and contra-lateral controls were analyzed after 3 weeks. Additional analysis of cell death and proliferation after injury was performed in wildtype mice. RESULTS: The total number of SMC lineage cells in healed arteries was comparable to normal arteries but comprised significantly fewer fluorescent phenotypes. The population had a complex, intermixed, clonal structure. By statistical analysis of expected versus observed fractions of fluorescent phenotypes and visual inspection of coherent groups of same-colored cells, we concluded that >98% of SMC lineage cells in healed arteries belonged to a detectable clone, indicating that nearly all surviving SMCs after severe injury at some point undergo proliferation. This was consistent with serial observations in the first week after injury, which showed severe loss of medial cells followed by widespread proliferation. CONCLUSIONS: After severe arterial injury, many surviving SMCs proliferate to repair the media and form a neointima. This indicates that the fraction of medial SMCs that are mobilized to repair arteries increases with the level of injury.


Assuntos
Neointima , Lesões do Sistema Vascular , Camundongos , Animais , Neointima/metabolismo , Proliferação de Células , Músculo Liso Vascular/metabolismo , Células Clonais/metabolismo , Lesões do Sistema Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Células Cultivadas
13.
Antimicrob Agents Chemother ; 67(11): e0067523, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37819082

RESUMO

Pseudomonas aeruginosa high-risk clones pose severe threats to public health. Here, we characterize the imipenem/relebactam (IR) resistance mechanisms in P. aeruginosa high-risk clones sequence type 235 (ST235) and ST463 in China. Minimum inhibitory concentrations (MICs) were determined, and Illumina short-read sequencing was performed for 1,168 clinical carbapenem-resistant P. aeruginosa (CRPA) isolates. The gene copy number and expression level were analyzed by Illumina sequencing depth and reverse transcription-quantitative PCR, respectively. Resistance conferred by bla GES-5 was evaluated by cloning experiments. ST463 and ST235 accounted for 9.8% (115/1,168) and 4.5% (53/1,168) of total isolates, respectively, and showed high frequencies of extensively drug-resistant and difficult-to-treat resistant phenotypes. The overall IR-resistant rate in CRPA was 21.0% (245/1,168). However, the IR resistance rate was 81.7% (94/115) in ST463-PA and 52.8% (28/53) in ST235-PA. Of the ST463 isolates, 92.2% (106/115) were Klebsiella pneumoniae carbapenemase-producing P. aeruginosa (KPC-PA), and all 94 IR-resistant ST463-PA produced KPC-2. Compared to IR-susceptible ST463 KPC-2-PA, IR-resistant ST463 KPC-2-PA exhibited significantly higher bla KPC-2 copy numbers and expression levels. In ST463 KPC-2-PA, 16 mg/L relebactam resulted in additional fourfold reductions in imipenem MIC50/90 values compared to 4 mg/L relebactam. In ST235, 1.9% (1/53) carried bla IMP carbapenemase and 54.7% (29/53) carried bla GES carbapenemase. Other than the IMP producer, all 27 IR-resistant ST235-PA produced GES-5. Cloning experiments revealed that imipenem resistance in bla GES-5-carrying PAO1 transformants was generally unaffected by relebactam. In conclusion, IR-resistant CRPA isolates in China were mainly distributed in P. aeruginosa high-risk clones ST463 and ST235. The major underlying IR resistance mechanisms were bla KPC-2 overexpression and bla GES-5 carriage.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamases/metabolismo , Carbapenêmicos/uso terapêutico , Células Clonais/metabolismo , Imipenem/farmacologia , Imipenem/uso terapêutico , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Infecções por Pseudomonas/tratamento farmacológico
14.
Stem Cell Res ; 72: 103209, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37769384

RESUMO

Phelan-McDermid syndrome (PMS) is a rare genetic disease characterized by a global developmental delay with autism spectrum disorder. PMS is caused by loss of function mutations in the SHANK3 gene leading to SHANK3 protein haploinsufficiency. This study describes the generation of isogenic clones produced from one male human embryonic stem cell line with deletions in SHANK3, in a heterozygous or homozygous manner, using CRISPR/Cas9 indel methodology. Differentiation of these clones into different neuronal lineages will help understanding PMS etiology and find treatments for PMD patients. (85/100 words).


Assuntos
Transtorno do Espectro Autista , Células-Tronco Embrionárias Humanas , Humanos , Masculino , Células-Tronco Embrionárias Humanas/metabolismo , Transtorno do Espectro Autista/genética , Sistemas CRISPR-Cas/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células Clonais/metabolismo
15.
Nat Immunol ; 24(9): 1565-1578, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37580605

RESUMO

Mucosal-associated invariant T (MAIT) cells are innate-like T cells that recognize microbial metabolites through a semi-invariant T cell receptor (TCR). Major questions remain regarding the extent of human MAIT cell functional and clonal diversity. To address these, we analyzed the single-cell transcriptome and TCR repertoire of blood and liver MAIT cells and developed functional RNA-sequencing, a method to integrate function and TCR clonotype at single-cell resolution. MAIT cell clonal diversity was comparable to conventional memory T cells, with private TCR repertoires shared across matched tissues. Baseline functional diversity was low and largely related to tissue site. MAIT cells showed stimulus-specific transcriptional responses in vitro, with cells positioned along gradients of activation. Clonal identity influenced resting and activated transcriptional profiles but intriguingly was not associated with the capacity to produce IL-17. Overall, MAIT cells show phenotypic and functional diversity according to tissue localization, stimulation environment and clonotype.


Assuntos
Células T Invariantes Associadas à Mucosa , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Células Clonais/metabolismo , Ativação Linfocitária/genética , Análise de Célula Única
16.
Nat Cancer ; 4(8): 1176-1192, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37537298

RESUMO

Detecting and targeting precancerous cells in noncancerous tissues is a major challenge for cancer prevention. Massive stabilization of mutant p53 (mutp53) proteins is a cancer-specific event that could potentially mark precancerous cells, yet in vivo protein-level mutp53 reporters are lacking. Here we developed two transgenic protein-level mutp53 reporters, p53R172H-Akaluc and p53-mCherry, that faithfully mimic the dynamics and function of mutp53 proteins in vivo. Using these reporters, we identified and traced rare precancerous clones in deep noncancerous tissues in various cancer models. In classic mutp53-driven thymic lymphoma models, we found that precancerous clones exhibit broad chromosome number variations, upregulate precancerous stage-specific genes such as Ybx3 and enhance amino acid transport and metabolism. Inhibiting amino acid transporters downstream of Ybx3 at the early but not late stage effectively suppresses tumorigenesis and prolongs survival. Together, these protein-level mutp53 reporters reveal undercharacterized features and vulnerabilities of precancerous cells during early tumorigenesis, paving the way for precision cancer prevention.


Assuntos
Lesões Pré-Cancerosas , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Carcinogênese/genética , Células Clonais/metabolismo , Lesões Pré-Cancerosas/genética
17.
J Exp Clin Cancer Res ; 42(1): 196, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550722

RESUMO

BACKGROUND: Genetic and metabolic heterogeneity are well-known features of cancer and tumors can be viewed as an evolving mix of subclonal populations, subjected to selection driven by microenvironmental pressures or drug treatment. In previous studies, anti-VEGF therapy was found to elicit rewiring of tumor metabolism, causing marked alterations in glucose, lactate ad ATP levels in tumors. The aim of this study was to evaluate whether differences in the sensitivity to glucose starvation existed at the clonal level in ovarian cancer cells and to investigate the effects induced by anti-VEGF therapy on this phenotype by multi-omics analysis. METHODS: Clonal populations, obtained from both ovarian cancer cell lines (IGROV-1 and SKOV3) and tumor xenografts upon glucose deprivation, were defined as glucose deprivation resistant (GDR) or glucose deprivation sensitive (GDS) clones based on their in vitro behaviour. GDR and GDS clones were characterized using a multi-omics approach, including genetic, transcriptomic and metabolic analysis, and tested for their tumorigenic potential and reaction to anti-angiogenic therapy. RESULTS: Two clonal populations, GDR and GDS, with strikingly different viability following in vitro glucose starvation, were identified in ovarian cancer cell lines. GDR clones survived and overcame glucose starvation-induced stress by enhancing mitochondrial oxidative phosphorylation (OXPHOS) and both pyruvate and lipids uptake, whereas GDS clones were less able to adapt and died. Treatment of ovarian cancer xenografts with the anti-VEGF drug bevacizumab positively selected for GDR clones that disclosed increased tumorigenic properties in NOD/SCID mice. Remarkably, GDR clones were more sensitive than GDS clones to the mitochondrial respiratory chain complex I inhibitor metformin, thus suggesting a potential therapeutic strategy to target the OXPHOS-metabolic dependency of this subpopulation. CONCLUSION: A glucose-deprivation resistant population of ovarian cancer cells showing druggable OXPHOS-dependent metabolic traits is enriched in experimental tumors treated by anti-VEGF therapy.


Assuntos
Glucose , Neoplasias Ovarianas , Fator A de Crescimento do Endotélio Vascular , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Células Clonais/metabolismo , Células Clonais/patologia , Glucose/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fosforilação Oxidativa , Ensaios Antitumorais Modelo de Xenoenxerto , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
18.
Nature ; 620(7974): 607-614, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37495687

RESUMO

Recent studies have documented frequent evolution of clones carrying common cancer mutations in apparently normal tissues, which are implicated in cancer development1-3. However, our knowledge is still missing with regard to what additional driver events take place in what order, before one or more of these clones in normal tissues ultimately evolve to cancer. Here, using phylogenetic analyses of multiple microdissected samples from both cancer and non-cancer lesions, we show unique evolutionary histories of breast cancers harbouring der(1;16), a common driver alteration found in roughly 20% of breast cancers. The approximate timing of early evolutionary events was estimated from the mutation rate measured in normal epithelial cells. In der(1;16)(+) cancers, the derivative chromosome was acquired from early puberty to late adolescence, followed by the emergence of a common ancestor by the patient's early 30s, from which both cancer and non-cancer clones evolved. Replacing the pre-existing mammary epithelium in the following years, these clones occupied a large area within the premenopausal breast tissues by the time of cancer diagnosis. Evolution of multiple independent cancer founders from the non-cancer ancestors was common, contributing to intratumour heterogeneity. The number of driver events did not correlate with histology, suggesting the role of local microenvironments and/or epigenetic driver events. A similar evolutionary pattern was also observed in another case evolving from an AKT1-mutated founder. Taken together, our findings provide new insight into how breast cancer evolves.


Assuntos
Neoplasias da Mama , Linhagem da Célula , Células Clonais , Evolução Molecular , Mutagênese , Mutação , Adolescente , Adulto , Feminino , Humanos , Adulto Jovem , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem da Célula/genética , Células Clonais/metabolismo , Células Clonais/patologia , Epigênese Genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio/patologia , Microdissecção , Taxa de Mutação , Pré-Menopausa , Microambiente Tumoral
19.
Methods Mol Biol ; 2681: 343-359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37405657

RESUMO

Integration of a gene of interest (GOI) into the genome of mammalian cells is the first step of cell line development campaigns for the production of biotherapeutics. Besides random integration methods, targeted gene integration approaches have emerged as promising tools over the last few years. In addition to reducing heterogeneity within a pool of recombinant transfectants, this process can also facilitate shorter timelines of the current cell line development process. Herein, we describe protocols for generating host cell lines carrying matrix attachment region (MAR)-rich landing pads (LPs), including BxB1 recombination sites. These LP-containing cell lines allow for site-specific and simultaneous integration of multiple GOIs. The resulting transgene-expressing stable recombinant clones can be used for the production of mono- or multispecific antibodies.


Assuntos
Regiões de Interação com a Matriz , Animais , Células Clonais/metabolismo , Proteínas Recombinantes/metabolismo , Transgenes
20.
Nature ; 620(7974): 651-659, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37468627

RESUMO

Even among genetically identical cancer cells, resistance to therapy frequently emerges from a small subset of those cells1-7. Molecular differences in rare individual cells in the initial population enable certain cells to become resistant to therapy7-9; however, comparatively little is known about the variability in the resistance outcomes. Here we develop and apply FateMap, a framework that combines DNA barcoding with single-cell RNA sequencing, to reveal the fates of hundreds of thousands of clones exposed to anti-cancer therapies. We show that resistant clones emerging from single-cell-derived cancer cells adopt molecularly, morphologically and functionally distinct resistant types. These resistant types are largely predetermined by molecular differences between cells before drug addition and not by extrinsic factors. Changes in the dose and type of drug can switch the resistant type of an initial cell, resulting in the generation and elimination of certain resistant types. Samples from patients show evidence for the existence of these resistant types in a clinical context. We observed diversity in resistant types across several single-cell-derived cancer cell lines and cell types treated with a variety of drugs. The diversity of resistant types as a result of the variability in intrinsic cell states may be a generic feature of responses to external cues.


Assuntos
Antineoplásicos , Células Clonais , Resistencia a Medicamentos Antineoplásicos , Neoplasias , Humanos , Células Clonais/efeitos dos fármacos , Células Clonais/metabolismo , Células Clonais/patologia , Código de Barras de DNA Taxonômico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , RNA-Seq , Análise da Expressão Gênica de Célula Única , Células Tumorais Cultivadas , Antineoplásicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...